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MOTIVATION
An increasing number of efforts have demonstrated the potential of
foundation models in the field of autonomous driving. However, the
experimental setups are preliminary and simplified compared to the
real driving scenarios in human environments faced by autonomous
vehicles (AVs).
• Agents should be able to plan long-horizon navigations in highly

dynamic environments;
• Agents should collaborate with humans in spoken dialogue in unex-

pected situations.
In this work, we study the capabilities and boundaries of LLM-based
AV agents, which are developed from both embodied and social ex-
periences, and tasked to navigate in continuous and dynamic en-
vironments and communicate with humans through sensorimotor
grounded dialogue.
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SIMULATED PLATFORM
We adopt the Dialogue On the ROad To Handle Irregular Events
(DOROTHIE), which was built upon CARLA [1] to study situated
human-vehicle communication. We collect dialogue data in a Wizard-
of-Oz (WoZ) setting.
• The participant communicates with the vehicle to visit goal locations

specified in a storyboard.
• The Cooperative-Wizard controls the agent’s behaviors and car-

ries language communication with the human participant to jointly
achieve the goal.

• The Adversarial-Wizard controls the environment and task interface
and introduces unexpected situations on-the-fly.
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TASK DEFINITION AND DATA
We recruit 40 human subjects and collect Situated Dialogue Navigation
(SDN) [2], a fine-grained navigation benchmark of 183 trials, consisting
of over 8,000 utterances and 18.7 hours of control streams. We evaluate
the agent’s ability to generate dialogue and the next navigation actions.

• When: human speaks or agent selects a dialogue/navigation action;
• Input: history of dialogue, RGB sensors, speech, and actions;
• Output: agent’s dialogue response (RfD) and next physical action

(NfD).
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👤are you able to make a u-turn to seven eleven?
 no i don’t think so.🚙

👤okay.
👤let’s just go to ikea first then.

 okay.🚙

👤turn left here actually.
okay.🚙

👤make a u-turn some point.
👤is that possible?

yes i do.🚙
👤can you make a u-turn now?
👤okay.
👤then we are gonna turn right to murfin avenue.

okay.🚙
but are we still going to ikea?🚙

👤no, 
👤take me to seven eleven.

okay.🚙
i think we are at seven-eleven.🚙

where shall we go next?🚙
👤um not yet.
👤move forward a little bit and stop.

okay.🚙
👤can you take me to annabel’s house?

where is annabel’s house?🚙
👤so let’s just go straight on duffield ave,
👤and turn right onto upland.

okay.🚙
👤and once you turn right to upland, 
👤continue straight until fuller, 
👤and turn right onto fuller.

okay.🚙
👤stop, 
👤this is it.

where shall we go next?🚙
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Besides these social experiences, we developed a data generation
pipeline to obtain paired data of embodied perception and descriptions
from the simulator. We replay the training sessions in the SDN bench-
mark to obtain the egocentric perception, record the environmental fac-
tors such as weather and nearby objects, and then fill these details into
language descriptions using templates.
• Distance to Road End: We compute the distance to the road’s end

by subtracting the current waypoint’s s value from the s value at the
road’s end.

• Lane Information: We note the lane number the car was in, counting
from the left, and record whether the car could switch to the adjacent
left or right lanes.

• Object in Front: We identify the object directly in front of the vehicle
from the ground truth obtained from the simulation, and compute
the distance to it.

• Traffic Sign Visibility: We record all visible traffic signs (e.g., traf-
fic lights, stop signs, speed limit signs), along with the information
they displayed (red/green for lights, posted speed limits), and their
distances from the vehicle.

• Weather Conditions: We record the current weather conditions that
could impact the vehicle’s control.

DRIVLME AGENT
The training process of DriVLMe consists of two stages:
• General video instruction tuning stage, focused on aligning the LLM

and the video tokenizer using large-scale driving videos;
• Social and embodied instruction tuning stage, focused on training

the LLM on the conversational data and episodes of embodied expe-
riences in a simulator.

To enable symbolic planning for long-horizon goals, we introduce a
route planner to incorporate the graph knowledge in the map into
DriVLMe. The planner takes as input a given target landmark on the
map and the current location of the agent and outputs a route from the
agent to the target landmark following the shortest path.
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SDN Dialogue Example
I think i have already arrived 
at the IKEA. 🚙

Can you take me to annabel’s 
place next?👤👤

Where shall we go next? 🚙

Where is annabel’s place? 🚙
Let’s just go straight on 
duffield and then turn right 
onto upland.👤

Okay. 🚙
And once you turn right to 
upland, continue straight 
until fuller and turn right.👤

EVALUATION RESULTS

Model NfD RfN
Act↑ Arg↑ Move↑ CIDEr↑ BERT↑ M↑

TOTO 41.2 36.0 40.9 - - -
GPT-4 53.0 44.2 11.0 0.06 0.48 0.09
GPT-4V 52.0 29.4 6.5 0.07 0.54 0.11

DriveVLM 70.4 71.3 61.4 0.43 0.76 0.37
DriVLMe (-social) 68.7 69.0 19.1 0.17 0.60 0.13
DriVLMe (-embodied) 68.4 67.7 62.7 0.45 0.76 0.37
DriVLMe (-domain) 62.4 70.7 60.9 0.35 0.75 0.18
DriVLMe (-video) 60.3 72.5 42.7 0.33 0.69 0.26
DriVLMe (-planner) 57.6 52.0 21.3 0.19 0.61 0.12

Model Description Justification Full
C↑ B4↑ R↑ C↑ B4↑ R↑ C↑ B4↑ R↑

ADAPT 219.35 33.42 61.83 94.62 9.95 32.01 93.66 17.76 44.32
DriveGPT4 254.62 35.99 63.97 101.55 10.84 31.91 102.71 19.00 45.10
DriVLMe 227.05 33.39 61.02 132.17 13.39 33.18 114.16 19.59 44.83

Model Speed Turning Angle
E↓ A0.1↑ A0.5↑ A1↑ A5↑ E↓ A0.1↑ A0.5↑ A1↑ A5↑

ADAPT 3.02 9.56 24.77 37.07 90.39 11.98 27.93 66.83 75.13 89.45
DriveGPT4 1.30 30.09 60.88 79.92 98.44 8.98 59.23 72.89 79.59 95.32
DriVLMe 1.59 22.76 50.55 70.80 99.20 33.54 61.38 70.70 76.21 91.55

• Planner module contributes to response generation and the next ac-
tion prediction.

• Social experiences significantly enhance response generation.
• Embodied experiences mainly aid the model in predicting actions

unrelated to route planning, such as lane switching.
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