

bread meat on a wooden table with tomatoes and a napkin

a red **star heart** is sitting in the snow

a woman in a coat [+and dress] is dancin

MOTIVATION

limited for real-time and real-world language-guided image editing applications.

- The inversion process is time-consuming;
- Balance between consistency and faithfulness is hard, even with optimization/calibration;
- Not compatible with *consistency sampling* using *consistency models*, which is more efficient.

UNIFIED ATTENTION CONTROL

UAC unifies cross-attention control $^{[2]}$ and mutual self-attention control $^{[3]}$ with an additional latent *layout branch*, which serves as an intermediate to host the desired composition and structural information in the target image.

[1] Denoising Diffusion Implicit Models. *Jiaming Song et al.* In ICLR 2020.

[2] Prompt-to-Prompt Image Editing with Cross Attention Control. *Amir Hertz et al.* In ICLR 2022.

[3] MasaCtrl: Tuning-Free Mutual Self-Attention Control for Consistent Image Synthesis and Editing. *Mingdeng Cao et al.* In ICCV 2023.

Inversion-Free Image Editing with Natural Language Sihan Xu^{*1}, Yidong Huang^{*1}, Jiayi Pan², Ziqiao Ma¹, Joyce Chai¹ ¹University of Michigan; ²University of California, Berkeley *equal contributions

a painting of a waterfall [+and angels] in the mountains

a teddy bear sitting on a box with a rose

DDCM AND VIRTUAL INVERSION

Inversion-based image editing methods, requiring an inversion branch as a series of anchors, are Sampling from a diffusion model is an iterative process that progressively denoises the data. Following Eq (12) in DDIM ^[1], the denoising step at t is formulated as:

$$z_{t-1} = \sqrt{\alpha_{t-1}} \left(\frac{z_t - \sqrt{1 - \alpha_t} \varepsilon_{\theta}(z_t, t)}{\sqrt{\alpha_t}} \right) + \sqrt{1 - \alpha_{t-1} - \sigma_t^2} \cdot \varepsilon_{\theta}(z_t, t) + \sigma_t \varepsilon_t \quad \text{where } \varepsilon_t \sim \mathcal{N}(0, I)$$

(predicted z_0)

When σ_t is chosen as $\sqrt{1 - \alpha_{t-1}}$ across all time t, the second term vanishes. The forward process naturally aligns with the form of Multistep (Latent) Consistency Sampling, consider $f(z_t, t; z_0)$ = $(z_t - \sqrt{1 - \alpha_t} \varepsilon'(z_t, t; z_0)) / \sqrt{\alpha_t}$, where the initial z_0 is available in image editing: $\hat{z}_{\tau_i} = \sqrt{\alpha_{\tau_i}} z_0^{(\tau_{i+1})} + \sigma_{\tau_i} \varepsilon,$

InfEdit (Ours)

a lone tree is reflected in the water at nig with a bright moon

(random noise) (direction to z_t)

$$z_0^{(\tau_i)} = f_\theta(\hat{z}_{\tau_i}, \tau_i, c)$$

Algorithm 2 DDCM for inversion-free image editing Input:

> Conditional Diffusion/Consistency Model $\varepsilon_{\theta}(\cdot, \cdot, \cdot)$ Sequence of timesteps $\tau_1 > \tau_2 > \cdots > \tau_{N-1}$ Reference initial input $z_0^{\rm src}$

Source/target prompts as conditions $c^{\text{src}}, c^{\text{tgt}}$ 1: Sample a random terminal noise $z_{\tau_1}^{\text{src}} = z_{\tau_1}^{\text{tgt}} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ 2: $\varepsilon_{\tau_1}^{\text{cons}} = (z_{\tau_1}^{\text{src}} - \sqrt{\alpha_{\tau_1}} z_0^{\text{src}}) / \sqrt{1 - \alpha_{\tau_1}}$

3:
$$\varepsilon_{\tau_1}^{\text{src}}, \varepsilon_{\tau_1}^{\text{tgt}} = \varepsilon_{\theta}(z_{\tau_1}^{\text{src}}, \tau_1, c^{\text{src}}), \varepsilon_{\theta}(z_{\tau_1}^{\text{tgt}}, \tau_1, c^{\text{tgt}})$$

4: $z_0^{\text{tgt}} = f_{\theta}(z_{\tau_1}^{\text{tgt}}, \tau_1, \varepsilon_{\tau_1}^{\text{tgt}} - \varepsilon_{\tau_1}^{\text{src}} + \varepsilon_{\tau_1}^{\text{cons}})$
5: for $n = 2$ to $N - 1$ do

6: Sample noise
$$\varepsilon \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

7:
$$(1) z_{\tau_n}^{\text{src}} = \sqrt{\alpha_{\tau_n}} z_0^{\text{src}} + \sqrt{1 - \alpha_{\tau_n}} \varepsilon$$

8: (1)
$$z_{\tau_n}^{\text{tgt}} = \sqrt{\alpha_{\tau_n}} z_0^{\text{tgt}} + \sqrt{1 - \alpha_{\tau_n}} \varepsilon$$

9: (2)
$$\varepsilon_{\tau_n}^{\text{src}} = \varepsilon_{\theta}(z_{\tau_n}^{\text{src}}, \tau_n, c^{\text{src}})$$

10: (3) $\varepsilon_{\tau_n}^{\text{cons}} = (\gamma_{\tau_n}^{\text{src}}, \tau_n, c^{\text{src}}) / \sqrt{1}$

10: (3)
$$\varepsilon_{\tau_n}^{\text{cons}} = (z_{\tau_n}^{\text{sic}} - \sqrt{\alpha_{\tau_n}} z_0^{\text{sic}})/\sqrt{1 - \alpha_{\tau_n}}$$

11: (4)* $\varepsilon_{\tau_n}^{\text{tgt}} - \varepsilon_n (z_{\tau_n}^{\text{tgt}} - \varepsilon_n z_0^{\text{tgt}})$

11:
$$(4)^* \varepsilon_{\tau_n}^{\text{csc}} = \varepsilon_{\theta}(z_{\tau_n}^{\text{csc}}, \tau_n, c^{\text{tgt}})$$

12:
$$(5) z_0^{\text{tgt}} = f_{\theta}(z_{\tau_n}^{\text{tgt}}, \tau_n, \varepsilon_{\tau_n}^{\text{tgt}} - \varepsilon_{\tau_n}^{\text{src}} + \varepsilon_{\tau_n}^{\text{cons}})$$

12: (5)
$$z_0^{\text{tgt}} = f_\theta(z_{\tau_n}^{\text{tgt}}, \tau_n, \varepsilon_{\tau_n}^{\text{tgt}} - \varepsilon_{\tau_n}^{\text{src}} +$$

13: end for

13: **end ior**

: Output: z_0^{tgr}

EXPERIMENTS AND INFEDIT DEMOS

A man playing

ABLATION STUDY

Method		Structure	
Inverse	Edit	Distance _{10³} \downarrow	PS
NT	P2P	13.44	/
VI	P2P	14.22	/
VI*	P2P	15.61	
VI*	UAC	13.78	

* Using the Latent Consistency Model (LCM) as the base model. Otherwise, Stable Diffusion (SD) v1.4 is adopted.

InfEdit (with <3s)

. in the forest

... with rainbow

. with a corgi

 $red \rightarrow green$

 $basketball \rightarrow soccer$ basketball $\rightarrow tennis$ basketball $\rightarrow guitar$ man $\rightarrow spiderman$

... in lakers jersey

... in a court

Efficiency (sec / #) **CLIP Similarity Background Preservation SNR** \uparrow **LPIPS** $_{103}^{\downarrow}$ **MSE** $_{104}^{\downarrow}$ **SSIM** $_{102}^{\uparrow}$ Whole \uparrow **Edited** \uparrow **Inverse Time** \downarrow **Forward Time** \downarrow **Steps** \downarrow 60.6735.8684.1124.7521.86 132.39 ± 7.69 12.90 ± 0.01 50 47.98 34.17 85.05 24.89 22.03 N/A 4.50 ± 0.01 32 27.52 2.60 ± 0.00 15 55.85 41.15 84.66 24.57 21.69 N/A 26.64 2.22 ± 0.02 12 47.58 32.09 85.66 25.03 22.22 N/A 28.51

