CycleNet: Rethinking Cycle Consistency in **Text-Guided Diffusion for Image Manipulation**

Sihan Xu^{*1}, Ziqiao Ma^{*1}, Yidong Huang¹, Honglak Lee^{1,2}, Joyce Chai¹ (*equal contributions)

Motivation

Summer Yosemite (Input)

Winter Yosemite (😄)

Winter Yosemite (😟)

- Consistency is a desirable property in image manipulation, especially in unpaired I2I scenarios as there is no guaranteed correspondence between images in the source and target domains.
- Pre-trained diffusion models (DMs) are effective in various image synthesis tasks. Still, it remains an open challenge to adapt them in unpaired I2I translation with a consistency guarantee.

ManiCups: Editing Object-State Changes

A dataset of state-level image manipulation that tasks models to manipulate cups by filling or emptying liquid to/from containers.

DDPM noted that the forward process allows the sampling of *zt* at any time step *t* using a closed-form sampling function:

The simplified objective is given by

CycleC CU

Inpaint + (Text2L

ControlNet ILV EGSI SDE Pix2Pix Masa P2P + NuCycleDiff FastCycl CycleN

CycleNet adopts ControlNet for conditioning and define a translation cycle as follows.

$$t_t = S(z_0, \varepsilon, t) := \sqrt{\bar{\alpha}_t} z_0 + \sqrt{1 - \bar{\alpha}_t} \varepsilon, \ \varepsilon \sim \mathcal{N}(0, \mathbf{I}) \text{ and } t \sim [1, T]$$

The reverse process can be carried out with a network $\varepsilon\theta$ that predicts the noise ε . One could estimate the original source image zo given a noised latent zt. Under conditioning, the reconstructed image can be given by:

 $\bar{z}_0 = G(z_t, c_{\text{text}}, c_{\text{img}}) := \left[z_t - \sqrt{1 - \bar{\alpha}_t} \varepsilon_\theta(z_t, c_{\text{text}}, c_{\text{img}}) \right] / \sqrt{\bar{\alpha}_t}$ With the translation cycle, a set of consistency losses is given by:

$$\begin{aligned} \mathcal{L}_{x \to x} &= \mathbb{E}_{x_0, \varepsilon_x} ||\varepsilon_{\theta}(x_t, c_x, x_0) - \varepsilon_x||_2^2 \\ \mathcal{L}_{y \to y} &= \mathbb{E}_{x_0, \varepsilon_x, \varepsilon_y} ||\varepsilon_{\theta}(y_t, c_y, \bar{y}_0) - \varepsilon_y||_2^2 \\ \mathcal{L}_{x \to y \to x} &= \mathbb{E}_{x_0, \varepsilon_x, \varepsilon_y} ||\varepsilon_{\theta}(y_t, c_x, x_0) + \varepsilon_{\theta}(x_t, c_y, x_0) - \varepsilon_x - \varepsilon_y||_2^2 \\ \mathcal{L}_{x \to y \to y} &= \mathbb{E}_{x_0, \varepsilon_x} ||\varepsilon_{\theta}(x_t, c_y, x_0) - \varepsilon_{\theta}(x_t, c_y, \bar{y}_0)||_2^2 \end{aligned}$$

$$\mathcal{L}_x = \lambda_1 \mathcal{L}_{x \to x} + \lambda_2 \mathcal{L}_{x \to y \to y} + \lambda_3 \mathcal{L}_{x \to y \to x} \qquad \mathcal{L}_{\text{CycleNet}} = \mathcal{L}_x + \mathcal{L}_y$$

Experiments

• Types of tasks: scene level, object type level, object state level. • Types of evaluation: qualitative and quantitative (image quality, translation quality, translation consistency)

S		summe	er→wint	er (Scene	level, 256	× 256)			hors	se→zebra	a (Object le	evel, $256 \times$: 256)	
cs	FID↓	$\text{FID}_{\text{clip}} \downarrow$	$\mathbf{CLIP}\uparrow$	LPIPS↓	PSNR ↑	SSIM ↑	$L2^{ imes 10^4}\downarrow$	FID↓	$\text{FID}_{\text{clip}} \downarrow$	CLIP ↑	LPIPS ↓	PSNR ↑	SSIM ↑	$L2^{\times 10^4}\downarrow$
						GAN-base	ed Methods	-						
AN	133.16	18.85	22.07	0.20	16.27	0.39	3.62	77.18	27.69	28.07	0.25	18.53	0.67	1.39
Γ	180.09	23.45	24.21	0.19	20.05	0.71	1.15	45.50	21.00	29.15	0.46	13.71	0.35	2.44
					Mask	k-based Di	ffusion Meth	nods						
ClipSeg	246.56	79.70	21.85	0.57	12.63	0.19	2.83	187.63	40.03	26.32	0.30	15.45	0.43	2.31
IVE	100.63	22.59	26.03	0.22	16.51	0.67	1.74	128.21	24.46	30.51	0.14	21.05	0.81	1.03
					Mas	k-free Dif	fusion Meth	ods						
+ Canny	338.24	83.26	21.77	0.59	6.05	0.09	11.30	397.71	77.68	23.88	0.61	7.37	0.07	3.89
R	105.19	37.24	22.91	0.59	10.06	0.16	3.62	148.45	40.80	25.95	0.57	10.24	0.17	3.57
DE	131.00	38.74	22.96	0.44	17.68	0.27	1.53	97.61	27.79	27.31	0.41	18.05	0.29	1.44
lit	330.98	79.70	21.85	0.57	12.63	0.19	2.83	398.60	83.21	24.17	0.66	9.75	0.11	4.01
Zero	311.03	81.54	22.03	0.57	14.31	0.32	5.08	377.44	86.21	24.37	0.67	11.18	0.19	3.85
Ctrl	106.91	52.38	20.79	0.36	16.22	0.36	3.71	333.17	68.31	21.15	0.40	16.31	0.37	1.83
llText	160.00	41.12	23.31	0.37	16.84	0.39	1.73	287.45	48.93	23.91	0.36	17.20	0.41	1.68
fusion	243.98	62.96	22.32	0.44	15.06	0.31	2.20	347.27	66.80	25.04	0.57	11.51	0.21	3.46
leNet	82.48	17.61	23.62	0.14	22.45	0.57	0.91	80.75	27.23	27.36	0.32	19.29	0.51	1.31
Net	82.52	17.54	23.32	0.13	22.42	0.57	0.90	81.69	28.11	28.91	0.27	20.42	0.52	1.14

Ablation Study

An ablation study on the role of each loss terms.

 $Lx \rightarrow y \rightarrow y$

ightarrow winter	$FID \downarrow$	CLIP ↑	LPIPS \downarrow
et	77.16	24.15	0.15
ice Only	76.23	25.13	0.23
ency Only	84.18	19.89	0.14
	211.26	24.35	0.61

Diversity and Generalization to OOD

Quantitative Examples

Limitations and Follow-ups

