

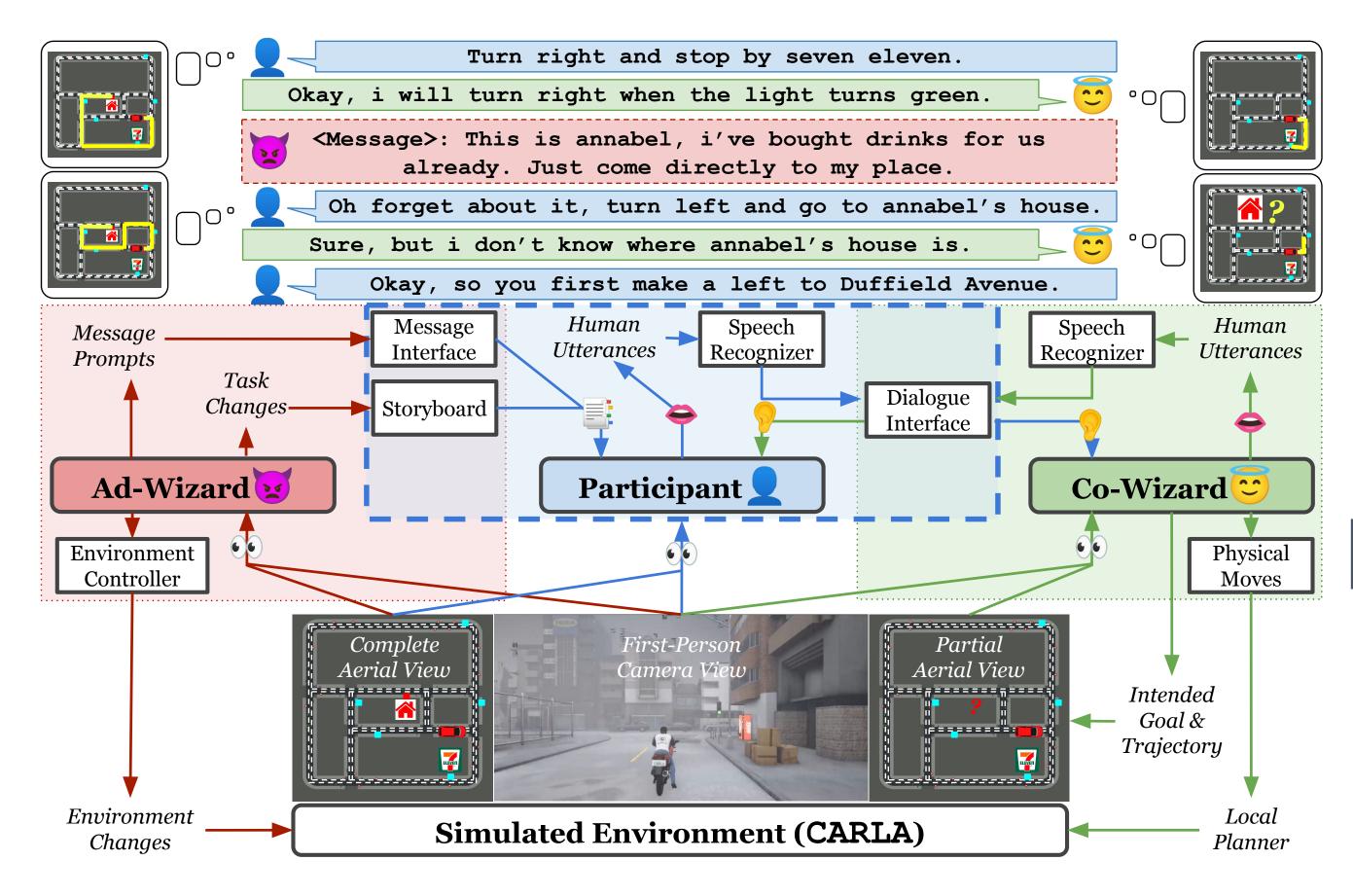
DOROTHIE: Spoken Dialogue for Handling Unexpected Situations in Interactive Autonomous Driving Agents

Ziqiao Ma, Ben VanDerPloeg*, Cristian-Paul Bara*, Yidong Huang*, Eui-In Kim, Felix Gervits, Matthew Marge, Joyce Chai

MOTIVATION

Current vision-and-language navigation (VLN) setups only reflect partial and simplified challenges compared to those faced by autonomous vehicles (AVs), which navigate in highly dynamic environment with continuous physical control. When unexpected situations arise, agents should collaborate with human operators in the form of spoken dialogue. It's thus important to empower AVs with the ability to harness human knowledge and expertise and to enable natural language communication and collaboration in tackling unexpected situations. In this work, we seek to enable AVs to navigate in **continuous** and **dynamic** environment, and communicate with human through **sensorimotor** grounded **dialogue**.

ENVIRONMENT AND HUMAN STUDIES


We developed a novel framework, **Dialogue On the ROad To Handle Irregular Events** (DOROTHIE) upon CARLA [1] to study situated human-vehicle communication based on the **Wizard-of-Oz (WoZ)** setting. We extend the traditional single-wizard to a duo-wizard setup approach by introducing a pair of Wizards.

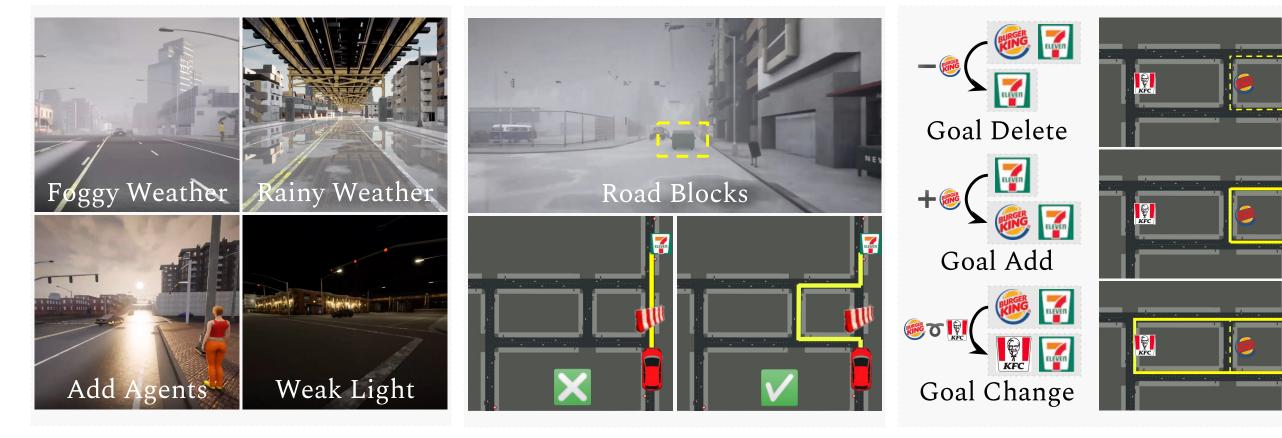
TASK DEFINITION

We evaluate the agent's ability in predicting dialogue moves from humans as well as generating its own dialogue moves and physical navigation actions.

- When: human speaks or agent selects a dialogue/navigation action
- Input: history of dialogue, RGB sensors, speech, and actions
- Output: human's current dialogue move/slot (UfD), agent's next dialogue move/slot (RfD), agent's next physical action (NfD)

- The **naïve participant** communicates with the vehicle to visit goal locations specified in a storyboard.
- The **Cooperative-Wizard** controls the agent's behaviors and carries language communication with the human participant to jointly achieve the goal.

QueryYN (A: UTurn)	Q is that possible?		Start0	
	yes i do. 🚙	ReplyY	JTurn(0)	
QueryYN (A:UTurn)	c an you make a u-turn now?		UTurn	
Acknowledge	Q okay.			
<pre>Instruct(A:JTurn,Str:Murfin)</pre>	then we are gonna turn right to murfin avenue.		Stop•	
	okay. 🚙	Acknowledge	Start•	
	but are we still going to ikea? 🚙	Check(L:Ikea,stat:Ongoing)	JTurn(0)	
ReplyN	👤 no,			
Clarify (L:SE)	1 take me to seven eleven.		JTurn (-90)	
	okay. 🚙 🗄	Acknowledge	JTurn (-90)•	[1:27]
	i think we are at seven-eleven.	Explain(L:SE,Stat:Complete)	Stopo	
	where shall we go next? 🚙	QueryW(L:Queried)		
Clarify(Stat:Ongoing)	u m not yet.			
Instruct(A:Start,A:Stop)	Q move forward a little bit and stop.			
	okay. 🚙 🖞	Acknowledge	StartQ	
QueryYN(L:House)	C can you take me to annabel's house?		Stop0	[5:26]
	where is annabel's house?	QueryW(L:House)		
ReplyW (A:LaneFollow,Str:Duffield)	so let's just go straight on duffield ave,			
ReplyW (A:JTurn,Str:Upland)	Q and turn right onto upland.			
	okay. 🚙 🛛	Acknowledge		
Explain (A:JTurn,Str:Upland)	Q and once you turn right to upland,			
Instruct (A:LaneFollow, Str:Fuller)	continue straight until fuller ,			
Instruct (A: JTurn, Str: Fuller)	Q and turn right onto fuller.			[8:05]
	okay. 🚙	Acknowledge	StartÓ	
Instruct(A:Stop)	stop,		•••	
Explain (Stat:Complete)	this is it.		Stop0	
	where shall we go next? 🚙	QueryW(L:Queried)		
· · · · · · · · · · · · · · · · · · ·		·	4	


COMPUTATIONAL MODEL AND EXPERIMENTS

We present Temporally-Ordered Task-Oriented Transformer (TOTO), a Transformer-based baseline.

Next Location, Goal Location	Physical Action/Arg	Dialogue Move/Slots	Dialogue Move/Slots	
Belief Head	Control Head	Speaker Head	Listener Head	
	Multilayer	Transformer Encoder		
	Co	oncat		
	Temporal	Embedding		
Map Encoder Map Map Knowledge	Action EncoderDialogue EncoderActionDialogue History	Look Up Table Trajection History Trajectory	Speech EncoderObject DetectorCurrentCurrentSpeechObservation	
Long-Term Semantic Memory	Long-Term Episodic Memory	Short-Term Working Memory	Situation Awareness	

• The **Adversarial-Wizard** controls the environment and task interface and introduces unexpected situation on-the-fly.

Physical Actions	Args	Descriptions
LaneFollow	_	Default behaviour, follow the current lane.
LaneSwitch	Angle(Rotation)	Switch to a neighboring lane.
JTurn	Angle (Rotation)	Turn to a connecting road at a junction.
UTurn	-	Make a U-turn to the opposite direction.
Stop	-	Brake the vehicle manually.
Start	-	Start the vehicle manually.
1-3 SpeedChange	Speed (± 5)	Change the desired cruise speed by 5 km/h .
LightChange	Light State (On/Off)	Change the front light state.
Mental Actions	Args	Descriptions
PlanUpdate	List[Junction ID]	Indicate intended trajectory towards a destination.
GoalUpdate	List[Landmark]	Indicate current goal as an intended landmark.
StatusUpdate	Tuple[Landmark, Status]	Indicate a change in task status.
KnowledgeUpdate	х,у	Guess the location of an unknown landmark.
Other	_	Other belief state updates.

We summarize the experiment results in the table below.

Madal	UfN (Seen)		RfN (Seen)		NfD (Seen)	
Model	Move Acc.	Slot F1	Move Acc.	Slot F1	Action Acc.	Act-Arg Joint Acc.
ТОТО	$40.9_{(\pm 3.9)}$	$36.9_{(\pm 0.0)}$	$29.2_{(\pm 0.7)}$	$55.7_{(\pm 0.2)}$	$41.2_{(\pm 2.5)}$	$36.0_{(\pm 3.4)}$
TOTO (+ Belief Tracking)	$39.5_{(\pm 2.2)}$	$37.0_{(\pm 0.1)}$	$28.8_{(\pm 0.9)}$	$55.7_{(\pm 0.2)}$	$40.7_{(\pm 3.6)}$	$34.0_{(\pm 4.7)}$
TOTO (- Action History)	$30.5_{(\pm 1.5)}$	$36.9_{(\pm 0.0)}$	$23.5_{(\pm 1.7)}$	$55.7_{(\pm 0.0)}$	$27.6_{(\pm 2.8)}$	$24.6_{(\pm 4.0)}$
TOTO (- GT Transcript)	$39.8_{(\pm 1.9)}$	$36.9_{(\pm 0.1)}$	$29.2_{(\pm 0.8)}$	$55.6_{(\pm 0.1)}$	$40.4_{(\pm 3.4)}$	$31.6_{(\pm 4.3)}$
TOTO (- Object Detection)	$42.5_{(\pm 2.8)}$	$37.0_{(\pm 0.2)}$	$30.4_{(\pm 0.7)}$	$55.8_{(\pm 0.1)}$	$39.2_{(\pm 3.5)}$	$34.4_{(\pm 5.8)}$
TOTO (- Vision History)	$41.9_{(\pm 1.3)}$	$37.0_{(\pm 0.2)}$	$29.1_{(\pm 0.5)}$	$55.8_{(\pm 0.2)}$	$42.0_{(\pm 3.1)}$	$36.1_{(\pm 4.0)}$
TOTO (- Current Speech)	$35.1_{(\pm 2.7)}$	$36.7_{(\pm 0.5)}$	$29.9_{(\pm 0.9)}$	$55.9_{(\pm 0.2)}$	$39.7_{(\pm 1.9)}$	$33.7_{(\pm 3.0)}$
TOTO (- Map Knowledge)	$42.6_{(\pm 1.2)}$	$36.9_{(\pm 0.0)}$	$29.3_{(\pm 0.9)}$	$55.8_{(\pm 0.2)}$	$44.6_{(\pm 3.3)}$	$39.1_{(\pm 3.3)}$
Episodic Transformer	$36.6_{(\pm 3.6)}$	$37.0_{(\pm 0.2)}$	$29.4_{(\pm 1.2)}$	$55.9_{(\pm 0.2)}$	$40.0_{(\pm 2.8)}$	$32.2_{(\pm 4.0)}$
Fine-tuned BERT	$66.8_{(\pm 2.0)}$	$24.9_{(\pm 5.5)}$	$52.7_{(\pm 1.0)}$	$46.0_{(\pm 2.5)}$	$32.4_{(\pm 1.2)}$	$16.2_{(\pm 2.7)}$
Madal	UfN (U	nseen)	RfN (U	nseen)	NfI	D (Unseen)
Model	Move Acc.	Slot F1	Move Acc.	Slot F1	Action Acc.	Act-Arg Joint Acc.
ТОТО	$49.2_{(\pm 3.0)}$	$26.2_{(\pm 0.0)}$	$31.0_{(\pm 1.7)}$	$54.0_{(\pm 0.7)}$	$45.8_{(\pm 3.8)}$	$41.1_{(\pm 2.8)}$
TOTO (+ Belief Tracking)	$47.1_{(\pm 3.5)}$	$26.2_{(\pm 0.0)}$	$29.0_{(\pm 2.0)}$	$53.7_{(\pm 0.7)}$	$47.6_{(\pm 4.5)}$	$38.8_{(\pm 3.1)}$
TOTO (- Action History)	$35.5_{(\pm 3.2)}$	$26.1_{(\pm 0.1)}$	$28.2_{(\pm 3.9)}$	$54.8_{(\pm 0.0)}$	$36.8_{(\pm 0.8)}$	$36.0_{(\pm 1.7)}$
TOTO (- GT Transcript)	$46.7_{(\pm 2.4)}$	$26.2_{(\pm 0.0)}$	$31.6_{(\pm 2.6)}$	$54.2_{(\pm 0.8)}$	$46.2_{(\pm 5.9)}$	$37.6_{(\pm 6.9)}$
TOTO (- Object Detection)	$50.0_{(\pm 1.8)}$	$26.2_{(\pm 0.1)}$	$32.7_{(\pm 2.2)}$	$53.8_{(\pm 1.2)}$	$45.7_{(\pm 5.2)}$	$40.3_{(\pm 5.4)}$
TOTO (- Vision History)	$48.7_{(\pm 2.3)}$	$26.2_{(\pm 0.1)}$	$31.5_{(\pm 2.9)}$	$54.3_{(\pm 0.7)}$	$45.9_{(\pm 4.2)}$	$42.3_{(\pm 3.5)}$
TOTO (- Current Speech)	$42.8_{(\pm 2.5)}$	$25.8_{(\pm 0.3)}$	$33.8_{(\pm 1.4)}$	$55.1_{(\pm 0.4)}$	$46.5_{(\pm 4.9)}$	$39.4_{(\pm 5.2)}$
TOTO (- Map Knowledge)	$48.2_{(\pm 1.0)}$	$26.2_{(\pm 0.1)}$	$31.9_{(\pm 1.2)}$	$54.9_{(\pm 0.8)}$	$51.7_{(\pm 3.4)}$	$46.0_{(\pm 4.0)}$
Episodic Transformer	$45.1_{(\pm 3.8)}$	$26.1_{(\pm 0.1)}$	$33.4_{(\pm 2.2)}$	$54.7_{(\pm 0.8)}$	$46.6_{(\pm 3.3)}$	$37.0_{(\pm 5.9)}$
Fine-tuned BERT	$67.2_{(\pm 1.5)}$	$16.2_{(\pm 3.5)}$	$57.0_{(\pm 0.9)}$	$46.9_{(\pm 2.2)}$	$37.1_{(\pm 1.5)}$	$19.6_{(\pm 3.6)}$

Overall, our preliminary experiment has shown that the tasks are challenging.

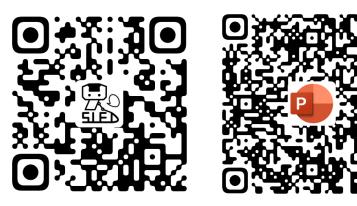
• TOTO is able to handle all tasks uniformly on both the seen and unseen splits of the test set, and outperform the majority of the unimodal baselines;

DATASET

We recruit 40 human subjects and collect Situated Dialogue Navigation (SDN), a fine-grained navigation benchmark of 183 trials.

We annotate each dialogue session with 4 levels of linguistic units.

- Transaction Units (TUs)
- Exchange Units (EUs)
- Dialogue Moves
- Dialogue Slots


Value
18.7 h
2.9 h
183
8415
50398
1373
578
4089
11623
8618
9448

- The finetuned language model only masters dialogue move tasks and the Episodic Transformer underperforms language tasks.
- Action history is crucial in the understanding and prediction of navigation/dialogue actions;

REFERENCES

LINKS

[1] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun. CARLA: An open urban driving simulator. In Proceedings of the 1st Annual Conference on Robot Learning, pages 1–16, 201

